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Summary. Quantum chemical orbital optimizations can be accomplished by 
Newton-type iterations, where al l  orbitals are improved at e a c h  step; or by a 
succession of Jacobi rotations, where only t w o  orbitals are improved at any one 
step. In both schemes, the iterative updating of the four-index two-electron 
integrals requires a large computational  effort. We show that the four-index 
transformation due to a Jacobi rotation can be simplified to such a degree that 
the successive execution of the four-index transformations of  N ( N  - 1)/2 differ- 
ent Jacobi rotations requires no greater computational  effort than that required 
by the o n e  full orthogonal transformation which is the product of  all N ( N  - 1)/2 
Jacobi rotations. The four-index updating has therefore no bearing on the 
relative merit of  the Newton approach versus the Jacobi approach. The Jacobi 
approach has, however, an advantage if the optimization of each Jacobi rotation 
angle is simple and if the effectiveness of  the individual Jacobi rotations can be 
assessed without the execution of four-index transformations. For, in that case, 
all ineffectual rotations are easily deleted from the iterative sequence. Whether 
convergence can be guaranteed for one or the other approach is also relevant. 
Our conclusions are illustrated by application to the problem of intrinsic orbital 
localization where the succession of Jacobi rotations is the more effective 
strategy. 
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1 Introduct ion 

Many quantum chemical problems call for the determination of a set of  N ortho- 
normal orbitals ~bl, ~b2, • • •, ~bN which make some functional L(~bl, q~2 . . . .  , q~N) 
an extremum. If nonlinear, such problems can be attacked by many-parameter 
Newton-Raphson  or Newton-Gauss  procedures or, alternatively, by a factor- 
ization in terms of  Jacobi rotations. In the former case, the functional is 
expanded to second order in terms of all N(N - 1)/2 parameters of  the orthogo- 
nal matrix T expressing the orbitals q~j in terms of  some orthonormal reference 
set and all of them are improved at each iteration. In the second case, the 
orthogonal matrix T is built up as the product of  a sequence of  Jacobi rotations 
J~, i.e.: 

T = J f ina l " ""  ]4  • J3 " J2 " J1 ( 1 . 1 )  

each of which is defined as a N x N orthogonal transformation which mixes only 
two orbitals: 

1 

1 

i j 

c o s  7 sin 7 

1 

1 

L = 1(i  j )  = 

- s i n  7 cos 7 

(1.2) 

1 

1 

(all non-indicated elements vanish) whence: 

~i = ~bi cos 7 + ~bj sin 

q~j = - q5 i sin ~ + ~bj. cos 7 (1.3) 

c~=c~ f o r v C i ,  j. 

In each iteration, the functional is then extremized only with respect to two 
orbitals at a time, i.e. with respect to one parameter 7- Such a sequence of  
optimizations of 2 x 2 orthogonal transformations was introduced by Jacobi in 
1846 for the diagonalization of symmetric matrices and shown to be very efficient 
in that case [1]. 

Quantum chemical problems are more complicated because, in general, the 
relevant functionals L contain electron repulsion integrals which depend on 
products of four matrix elements of the orthogonal matrix T, i.e. L depends on 
the fourth order direct product of  T with itself whereas matrix diagonalizations 
depend only on the second order direct product of  T with itself. In quantum 
chemical language: whereas matrix diagonalizations call for two-index transfor- 
mations, electron repulsion integrals call for four-index transformations. The 
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complication is non-trivial for the Jacobi approach as well as the Newton 
approach. Which of the two methods is more effective depends on the nature of 
the functional L. On the one hand, N ( N -  1)/2 Jacobi rotations are required to 
improve all parameters in T, whereas each Newton iteration seeks to improve all 
parameters at once. On the other hand, the optimization can be done exactly for 
each Jacobi rotation since it depends only on one variable, whereas each Newton 
iteration is limited to a quadratic approximation. 

The most serious bottleneck created by the two-electron character of L arises 
from the fact that the two-electron integrals between molecular orbitals must be 
continually updated by a four-index transformation during the iterative process. 
Such transformations are very operations-intensive and time-consuming and are 
often rate-determining. The operation count of a full four-index transformation, 
induced by a general orthogonal transformation T, such as is needed in the 
Newton method, is known to be of order O(N 5) [2]. Since one would assume 
that, typically, more Jacobi rotations than Newton iterations are needed for 
convergence, a crucial question is whether the four-index transformation induced 
by one Jacobi rotation requires significantly less computational effort. The 
extreme sparsity of the Jacobi rotations makes this likely. 

In Sect. 2, we show that the four-index transformation induced by a Jacobi 
rotation is in fact of order O(N 3) and give explicit formulas for its most efficient 
evaluation. It follows that the construction of all four-index transformations 
generated by one sweep through all possible N ( N -  1)/2 Jacobi transformations 
embodied in a given orthogonal matrix T is of order O ( N  3) • O ( N  2) = O(NS), i.e. 
it requires essentially the same computational effort as the one full four-index 
transformation generated by T. 

In view of this result, the relative merit of the Newton approach versus the 
Jacobi-factorization approach for a particular problem is not determined by the 
integral update but by other algorithmic complexities of each iterative step as 
well as by the convergence properties of the iterative sequence. Certain advan- 
gages of the Jacobi rotation approach regarding the iterative sequencing will be 
discussed in sect. 3. 

An excellent example, illustrating the effectiveness of the Jacobi rotation 
approach, is the Edmiston-Ruedenberg algorithm for localizing molecular or- 
bitals [3] which is briefly discussed in Sect. 4. Although the efficiencies derived in 
Sections 2 and 3 are straightforward and were actually implicit in the 1967 
localization code of K.R.'s research group, authored by R.C.R. [4], they seem to 
have generally gone unnoticed and, because of the O(NS)-presumed four-index 
updating, the E - R  localization has been widely believed to be unwieldy. The 
quantitative application, reported in Section 4 for a system with about 50 
occupied orbitals, illustrates that this inference is in fact unwarranted. 

Within the context of the variation principle, the method of Jacobi rotations 
has been used for the optimization of orbitals in Miller and Ruedenberg's [5] 
determination of pair wavefunctions for four-electron atomic systems, probably 
the earliest MCSCF calculations made. Raffenetti, Ruedenberg and Hoffman [6] 
have established the formulas for the construction of a general orthogonal 
transformation from Jacobi rotations and they were used by Mehler, Silver and 
Ruedenberg [7] for the variational determination of orbitals in molecular pair 
wavefunctions. The use of Jacobi rotations in general MCSCF calculations has 
recently been discussed by Carbo, Domingo Novoa and Peris [8]. 
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2 Transformation of four-index integrals 

2.1 General analysis 

A general unitary rotation from an orbital set dO into a new orbital set ~ can be 
written as: 

N 
~p=2Tp~u.  (2.1) 

If the two-electron integrals in terms of dO, namely [~)p~)q [ ~)r~)s] ~--. [pq [rs], are 
known, then the two-electron integrals in terms of dO are determined by: 

N 
[q~"p~bq 1 4~rq~,] = 2 Tp~,Tq.oTrQTs~[~v [ 0o.]. (2.2) 

#vQ~, 

A Jacobi rotation of  the orbital set dO into the set ~,  say: 
N 

qgp = £ (2.3) 
,u 

can be written as: 

JpF, = g~p~, + Ap~,, (2.4) 

with A being a matrix giving the correction to the unit matrix and containing 
only four non-zero elements. If the Jacobi rotation is performed between the 
orbitals q~i and ~bj, then the nonzero part of A takes the form of the 2 x 2 matrix: 

(Aii A i j '~=(cos? - I  sin? ) (2.5) 
A = Aji A / j /  \ -- sin ? cos V -- 1 " 

The Jacobi transformation of  the two-electron integrals from the q~ orbitals 
to the q~ orbitals can then be written in the form: 

N 
[~p~q [ ~r~s] = £ (~plt "~- Ap,u)(~qv "q- Aqv)((~ro -]- Aro)(~s~r -[- Ascr)[/-Lv ] Qo'] 

#vQa 

= [pq [rs] 
N N 

+ ~, A,o [pq I ro.] + ~ A ro [Pq [ Qs] 

N N 
+ £ A qv [P~) [ rs] + ~ Ap• ~q [ rs] 

v p 

N N 
+ ~ ArQAs~[pq [ oo. ] + ~ Aq.oAs~[pv [ro.] 

O~ "Off 

N N 
+ £ AqvArp[PV I osl -t- £ ApgA.,~[#q J ro. l 

vO pa 

N N 
"-k ~ Ap.uArp[JAq J os ] --[-£ Ap~AqvUUv Its]  

#o t t'' 

N N 
+ £ AqvArpAs~[pv lifo'] + ~ Ap.AreAs~[Pq [Qo'] 

your p~orr 
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N N 

+ Z ApuAqvA~,[BV I + Z ApuAqvAre[#v l es] 
#vtr ,uvQ 

N 

+ ~ Apt, hqvhreAs,,Luv l ea]. (2.6) 
pvoa  

Since only those elements of d which give nonzero contributions are to be 
summed over, only two values, i and j, are assumed by the summation variables 
which index d. The only variables which contribute to the N-dependence of the 
computational complexity are, therefore, those which index both sets of  two- 
electron integrals: those in terms of ~ and those in terms of ~. Equivalently, the 
exponent of N in the computational complexity of each term in Eq. (2.6) is equal 
to the number of indices which do not subscript d. At first glance, this gives an 
overall complexity of O(N 4) due to the [pq Irs] term. However, this is just a copy 
of  the original set of  integrals which can be avoided by first computing all of the 
corrections to the original set of integrals and then summing the corrections into 
these integrals. The remaining terms have at most three indices not occurring as 
an index to A, and thus the computational complexity of these terms is O(N3). 
The memory overhead of  first storing the corrections to the [pqlrs] before 
constructing the [c~p~ql~ r q~s] is also O(N3). However, by using the explicit 
formulas of  Sect. 2.2 for the integrals that are transformed, intermediate storage 
of corrections is in fact not necessary. 

2.2 Explicit formulas: Irreducible linear combinations of  orbital products 
with respect to the group of Jacobi rotations between two orbitals 

There exist six different cases for the two-electron integral updating, namely in 
any one integral: (1) All four orbitals are rotated; (2) three orbitals are rotated; 
(3) two orbitals, occupied by the same electron, are rotated; (4) two orbitals, 
occupied by different electrons, are rotated; (5) one orbital is rotated; (6) none of  
the four orbitals is rotated. As before, we denote.the.two orbitals between which 
the Jacobi rotation takes place as (q~i, q~j)--*(~bi, ~bj). In order to obtain the 
four-index transformation formulas in their simplest forms, it is expedient to 
begin by establishing those linear combinations of orbital products which 
transform according to the irreducible representations of the group of  Jacobi 
rotations between two given orbitals. 

First consider the two-orbital products. The appropriate linear combinations 
are: 

f~(1, 2) = [q~(1)~b~(2) + c~s(1)~s(2)]/2, (2.7a) 

f2 ( 1, 2) = [~b~ ( 1)~bj (2) - ~bj (1)~bz (2)]/2, (2.7b) 

gl ( 1, 2) = [q~i ( 1)q~; (2) - qSj (1)~b s (2)]/2, (2.7c) 

g2(l, 2) = [q~i(1)q~j(2) + ~bj(1)q~(2)]/2. (2.7d) 

Under the Jacobi rotation of Eq. (1.3), they are readily seen to transform as 
follows: 

J~ = f l ,  (2.8a) 

J~ =f2,  (2.8b) 

gl = gl cos 27 + g2 sin 27, (2.8c) 

g2 = - g l  sin 27 + g2 cos 27. (2.8d) 
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Next consider the three-orbital products. The appropriate linear combina- 
tions are (note that f2(2, 2) vanishes): 

Ul(1, 2) = q~i(1)f~ (2, 2), (2.9a) 

u2(1, 2) = ~bj (1)f~ (2, 2), (2.9b) 

vl(1, 2) = [~b;(1)gl(2, 2) + q~j(1)g2(2, 2)]/2, (2.9c) 

v2( 1, 2) = [~bi( 1)g2(2, 2) - ~bj( 1)g~ (2, 2)]/2, (2.9d) 

w,(1, 2) = [~bi(1)g~(2, 2) - ~bj(1)g2(2, 2)]/2, (2.9e) 

w2 ( 1, 2) = [4~; ( 1)g2 (2, 2) + 4~j (!)g, (2, 2)]/2. (2.9f) 

By virtue of Eqs. (1.3) and (2.8), these are seen to transform as follows: 

/~1 = Ul cos 7 31- u2 sin 7, (2.10a) 

~2 = - u l  sin 7 + u2 cos 7 (Z10b) 

fa = v, cos 7 + v2 sin 7, (2.10c) 

v2 = -Vl  sin 7 + v2 cos 7, (2.10d) 

wl = Wa cos 37 + w2 sin 37, (2.10e) 

W2 = --Wl sin 37 + W2 COS 37. (2.100 

Finally consider the four-orbital products. The relevant linear combinations are: 

pi(1, 2) = f l (1 ,  1)f, (2, 2) (2.11a) 

p2(1, 2) = [g,(1, 1)g,(2, 2) +g2(1,  1)g2(2, 2)]/2 (2.1 lb) 

ql(1, 2) =f~(1, 1)gl(2, 2) (2.1 lc) 

q2(1, 2) =f~(1, 1)g2(2, 2) (2.11d) 

q ( 1 ,  2) = [gl(1,  1)g,(2,  2) - g2(1, 1)g2 2, 2)]/2 (2.1 le) 

r2( 1, 2) = [g~( 1, 1)g2(2, 2) + g2( 1, 1)g~ (2, 2)]/2. (2.1 lf) 

By virtue of the transformation Eqs. (2.8), one obtains for them the transforma- 
tions: 

]~1 = P l  (2.12a) 

P2 = P2 (2.12b) 

ql = ql cos 27 + q2 sin 27 (2.12c) 

q2 = - q l  sin 27 + q2 cos 27 (2.12d) 

P, = r 1 cos 47 + r 2 sin 47 (2.12e) 

r2 = - r l  sin 47 + r2 cos 47. (2.12 0 

2.3 Explicit formulas: Integral transformations 

With the help of the definitions (2.7), (2.9), (2.11) and the transformation 
formulas (2.8), (2.10), (2.12), compact and efficient two-electron integral-trans- 
formations are easily formulated. In agreement with the preceding conventions, 
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the indices i, j, k, l denote orbitals which are rotated, whereas the indices p, q, r, s 
denote orbitals which are unaffected by the Jacobi rotation. 

Case 1. All four orbitals are rotated. In analogy to Eqs. (2.11), define the 
following linear combinations of integrals: 

P1 = [fl fl]  
i2] + [j2 [j21 ÷ 2[i2 1j2]}/4 (2.13a) 

gl] + [g2 [ &]}/2 

i~] + [j2 IJq - 2[ i2 IJ 2] + 4[ij I ij]}/8 (2.13b) 

= {[i2 

p~ = {[g, 
= { [ i2  

Q1 = [fl 
= { [ i2  

Q2 = [fl 
= { [ i2  

R 1  ---= { [ g l  

= { [ i2  

R2 = {[gl 

= {[i2 

gl] 
i2] __ [j2 

gd 
/j] + [j2 

I j 2] }/4 (2.13c) 

U]}/2 (2.13d) 

gl]  ÷ [g21 g2] }/2 
i2] + [j2 ij2] _ 2[i2 ij2] _ 4[ij] ij]}/8 (2.13e) 

g2] + [& I gd}/2 -- [gl ]gd 
ij] - [j2 ij]}/2. (2.130 

It is evident that these integral combinations transform in exactly the same way 
as the corresponding two-electron functions. The integral transformation for this 
case is therefore accomplished as follows 

(i) Calculate theJquantities P1 through R2 from the integrals [i j lk l]  by Eqs. 
(2.13). 

(ii) Calculate the quantities P1, P2, Q1, Q2, R1, R2 from Eqs. (2.12) with the 
lower case symbols p, q, r replaced by the capital symbols P, Q, R. 

(iii) Calculate the transformed integrals [,71 k'~ from the quantities Pt,  P2, Q1, 
Q2, R1, R2 by inverting the equation system (2.13), which yields: 

[?  

[? 

[,7 
[?  

[]~. 

~] ---- ffl ÷ ~ ÷/~1 ÷ 201, (2.14a) 

j"2] =/31 + / ~  +/~1 - 201, (2.14b) 
j"2] =/~i - ~ -/~1, (2.14c) 

/~ = / ~  --/ql, (2.14d) 
/~ = Q2 +/~2, (2.14e) 
/J~ = 02 -- t~2" (2.140 

Case 2. Three orbitals are 
integral combinations: 

e lp  = [~)p ~Oi I A ] 
= {[p i [ i  21 + [pi [j21}/2 

U2, = [4p4)j Ifll  
: {[pj I i 2] + [pj 1j2]}/2 

rotated. In analogy to Eqs. (2.9), we now define the 

(2.15a) 

(2.15b) 
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VIe 

Wlp 

W:p = 

{[qbpqbe l gl] + [qSpqSj [ g2]/2 

{[pi ] i:] - [pi I j 2] -t- 2[pj I tj] }/4 

{[~bp~b; [g:] - [~bp~bj I gl]}/2 

{2[pi I/j] - [pj [ i 2] + [pj lj2]}/4 

{[q~pqS~ I gl] - [~bp~bj [ g2]}/2 

{[pi [ i2] _ [pi l j2] _ 2[pj ] ij]}/4 

{[Op~b i I g:] + [qbpq~j [ gl])/2 

(2.15c) 

(2.15d) 

(2.15e) 

Case 3. Two orbitals are rotated. If the electron coordinates "1" and "2" are 
identical, i.e. "1" = "2", in Eqs (2.7), then f2 vanishes. We define therefore the 
following three integral combinations: 

rlpq=[(Op~q [fl] 

= {[pq I i 2] + [pq [jz]}/2 (2.17a) 

alpq = [~p~q I gd 
= {[pq I i 2] - [pq If]}/2 (2.17b) 

a2pq = [~)p~) q [g2] 
= [pq [i j]. (2.17c) 

The transformation of the integrals [pq [i j] ls now accomplished by: 

(i) Calculating the quantities Flpq, Glpq, Gzp q from the integrals [pq [ i j] by Eqs. 
(2.17). 

(ii) Calculating the transformed quantities FlpqGlpqG2pq using Eqs. (2.8) with f 
and g replaced by F and G. 

[Pfl/2] = + vlp -4- wlp (2.16a) 

[P{IJ 21 = U l p -  ~' lp- l~lp (2.16b) 

[PJ'] ?] = Uzp - l~2p + ff/Zp (2.16c) 

[pf[j:] = (22p + ['~2p - ~r2p (2.16d) 

[P/'~I /J~ = I~2p "[- l/~r2p (2.16e) 

[pf[ if]= ~"lp -- l/Vxp. (2.160 

= {2[pi I ij] + [pj l i  2] - [pj If]) /4.  (2.15 0 

The transformation of the integrals [pi Ijk] is then accomplished as follows: 

(i) Calculate the quantities Ulp through Wzp from the integrals [pi Ijk] by Eqs. 
(2.15). 

(ii) Calculate the quantities Ulp to l~'2p from the quantities U~p to W2p according 
to Eqs. (2.10) with u, v, w replaced by U, V, W. 

(iii) Calculate the integrals [pi"lj~ ] by inverting Eqs. (2.15), which yields: 
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(iii) Calculating the integrals [pq [/~ by inverting Eqs. (2.17) which yields 

[Pq I T2] = Flpq "q- Glpq, (2.18a) 

[pq [f2] = Flpq - alpq, ( 2 . 1 8 b )  

[Pq ] ~] = G2pq. (2.18c) 

Case 4. Two orbitals are rotated. In addition to the integral notation of Eq. (2.2), 
we use here also the alternative notation 

( ij] [kl) = .f dV, .f dV2 dpi(1)~j( 2)r ~1 ~(1)41(2 ) = [ik [jl] 

for convenience. In analogy to Eqs. (2.7), we define the integral combinations: 

Dlpq= ((ap~ql l f , )  
= {[pi[qi] + [pj[qj]}/2 (2.19a) 

O2p q = <~)p~Dq [[f2) 
= {[pi I qj ] - [pjlqi]}/2 (2.19b) 

Hip q = (~Op~)q I lgl ) 
-- {[pi [ qi] - [pj [ qj])/2 (2.19c) 

n2pq = (~)p~)q jig2) 

= {[Pilqj] + [pjlqi]}/2. (2.19d) 

The transformation of the integrals [pi ]q j] is accomplished by: 

(i) Calculating the quantities Dip q t o  H2p q from the integrals [pilqj] by Eqs. 
(2.19). 

(ii) Calculating the quantities D~pq to/~2pq using Eqs. (2.8) with the letters f and 
g replaced by D and H respectively. 

(iii) Calculating the transformed integrals [pi" I q~ by inverting the equation 
system (2.19) which yields: 

[pi"[ qf] = JVlpq "~- ~Ilpq, (2.20a) 

[P)'I q~ = O l p q  - -  ~ l l pq ,  (2.20b) 

[pi"[ qj] =/)2pq +/~2pq, (2.20c) 

[Pf [ q[] = - D2pq + kI2pq, (2.20d) 

Note that, when p = q, = Ozp p and J~2pp both vanish, reducing the four equations 
(2.19) as well as those of (2.20) to three, which are similar to Case 3. 

Case 5. One orbital is rotated. In this case, the Jacobi rotation formulas of Eq. 
(1.3) can be directly inserted in the two-electron integrals, yielding: 

[pq [ r{] = [pq [ ri] cos 7 + [Pq [ rj] sin 7, (2.21a) 

[pq [ r~ = - [pq  [ ri] sin 7 + [Pq ] rj] cos 7. (2.21b) 

This set of transformations is the only one of order O(N3). 
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Case 6. No orbital is rotated. These integrals [pq l rs] are unaffected by the 
Jacobi rotation between orbitals i and j' and require no updating. 

2.4. Transformation algorithm 

We have implemented a program based on the explicit formulas of the preceding 
section. Efficiency and minimization of temporary storage can be accomplished 
because no one integral requires more than six integrals as input and each member 
o f  such an integral input set involves only the other members o f  the same set in the 
updating process. The challenge is to construct the program in such a way that, 
for any Jacobi rotation between two arbitrary orbitals, the code will cycle 
through all update sets in an efficient manner. Computer memory, either real or 
virutal, is assumed to be large enough to hold the entire integral set so that it is 
straightforward to locate any integral by standard indexing procedures. 

The following strategy is followed to ensure that all required updates are 
made and indexing is done economically: 

(i) Arrange for input acceptance of the dimension N of the orbital set and of the 
original integral array. 

(ii) Arrange for input acceptance of the index pair (i, j)  indentifying the two 
orbitals to be rotated and of the rotation angle 3, or an appropriate function of 
7. This matter will be discussed in further detail below. Calculate the factors 
sin 3', cos 3,, sin 27, cos 27, sin 47, cos 47 . 

(iii) Calculate pair indices and index offsets such as i(i - 1)/2, i(i + 1)/2, and 

( i j ) = j + i ( i - 1 ) / 2  ifi>>-j, ( i j ) = i + j ( j - 1 ) / 2  i f i < L  (2.22) 

as well as the analogous quantities between the numbers ( i i ) ,  ( ( j ) , ( . j y ) .  In all 
calling routines the convention i > j  is strictly observed. 

(iv) Update the six integrals [i2 1 i2], [j2 iJ21, [i 2 ij2], [i21ij], [j2lij] ' [ijlij], by 
the formulas of Sect. 2.3, Case 1. 

(v) Update the integrals [pq 1i21, [pq I j2], [pq I ij] in groups of three according 
to the formulas of Sect: 2.3, Case 3, and within a pair of loops over p and q, with 
p running from 1 to N and q, running from 1 to p. Omitted are the (p, q) pairs 
for which (pq)  = ( i i )  or Q j )  or ( i j ) ,  where the definition of Eq. (2.22) has 
been used. 

(vi) Update the integrals [pi [pi], [pj I PJ], [pi I pJl in groups of three within 
a single loop over p according to the formulas of Sec. 2.3, Case 4. Note that 
the four-integral update for Case 4 degenerates into a three-integral update 
when p = q. The loop runs over p from 1 to N, omitting the cases p = i and 
p -~ j. 

(vii) Update the integrals [pq I ri], [pq I rj] according to the formulas of Sect. 
2.3, Case 5 in groups of two within a triple loop over p, q, r with 1 ~< r ~< N, 
1 ~< q -%< N, 1' ~< p ~< q. Omitted are all cases for which r = i or j. This relatively 
simple case is the only one with an operation count of  O(N3). 

(viii) In the program, the integrals [pi ] qi], [pj I q J], [pi [ q j], [pj I qi] for p ¢ q 
are not obtained by using the formulas of Sec. 2.3, Case 4, but by two 
consecutive single orbital updates of the type of Case 5 [see item (vii)]. 
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(ix) In the program, the integrals [pi]jk] are not obtained by the formulas of 
Sect. 2.3, Case 2, but by following the Case 3 update, discussed above under item 
(v), with a single orbital update of the type of  Case 5 [see item (vii)]. 

As regards the calculation of  7 (see item (ii) above), it is to be noted that many 
quantum mechanical functionals are invariant with respect ot sign changes in all 
orbitals and, hence, the addition of  _ rc to 7. In such cases, L turns out to be a 
function of cos 27 and sin 27, and y can be limited to a range of extent ~. In the 
interest of continuity in the successive orbital changes during the iterative process, 
in particular when 7 is close to convergence, this range should be chosen as: 

- r e /2  ~< 7 < re/2. (2.23) 

This will prevent uncontrolled orbital sign changes. 
If  L depends only on cos 27 and sin 27, each orbital improvement calculation 

determines only (27). Most likely it will determine cos 27 and sin 27. From there, 
one can obtain cos 7 and sin 7 through: 

cos y = [(1 + cos 27)/2] 1/2, sin 7 = [( 1 - cos 27)/2] 1/2. (2.24) 

To insure the domain limitation of  Eq. (2.23), the signs must be chosen as 
follows: If cos 7 is non-zero, then it is positive; if sin 7 is non-zero, then one has 
s i n y > 0  when sin 2 7 > 0 ,  and s i n T < 0  when sin 27~<0. From cos 7, sin 7, 
cos 27, sin 27, one can then calculate cos 37, sin 37, cos 47, sin 47, so that it is 
never necessary to calculate trigonometric functions or their inverses. 

Some functionals such as the one pertaining to orbital localization are also 
invariant with respect to orbital interchanges. It is readily seen that, in such cases, 
the functional L will depend only upon cos 4y and sin 47. We shall discuss this 
case in Sect. 4. 

While the current program is written in a sequential mode, it should be noted 
that the algorithms described under items (v), (vi), (vii) each describe loops over  
independent update sets. By virtue of this independence, the total procedure is 
readily amenable to implementation for parallel or distributedprogramming envi- 
ronments. 

3 Sequencing of the Jacobi rotations 

The efficiency of any iterative scheme depends critically on the number of 
iterations required for convergence. Economy in this respect is particularly 
important in quantum chemical problems because of the high cost of the 
concomitant four-index transformations. In the context of the Jacobi rotation 
approach, this number can be reduced by deciding whether or not to execute 
each individual 2 x 2 transformation at any given stage of the calculation. 
Manifestly, such a decision must be based on an assessment of the efficacy of any 
particular Jacobi rotation and, to be useful, such an assessment must be possible 
without prior execution of the four-index transformation. In a general context, a 
perturbation estimate for the extremization functional L may be appropriate to 
obtain such an assessment. In the case of the E - R  orbital localization algorithm 
[3], it turns out that an exact prediction of the localization gain due to a Jacobi 
rotation is available at practically no cost, as we shall see in the next section. 

One can think of  various ways of removing ineffectual Jacobi rotations. In all 
of  them, the calculation is arranged in terms of a sequence of sweeps each of  
which goes through all N ( N -  1)/2 possible different Jacobi rotations in some 
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systematic order. The most straightforward procedure is to execute, during each 
sweep, only the one Jacobi rotation with the maximal extremization gain, as 
suggested by E-R [3]. A slight modification consists of executing, during each 
sweep, all those Jacobi rotations whose extremization gain is greater than a certain 
fraction (say 50%) of the maximal extremization gain. A third algorithm is similar 
to that in general use for the Jacobi diagonalization method [9]. Here, only those 
Jacobi rotations are executed during any given sweep for which the pretested 
localization gain exceeds a certain threshold (th). The latter starts out loose and 
is progressively tightened in the course of the iterative process. Since the total 
increase in the localization functional L typically is of the order of a fraction of 
a hartree per orbital, the following sequence of thresholds is used for the case of 
localization: (th) = 1, z ,  z 2 ,  z 3 . . . .  , z k hartree, where 0 < z < 1 (typically between 
0.3 and 0.6) and z k< the absolute convergence criterion demanded for L, e.g. 10-12 
hartree. Each intermediate threshold (th) is lowered whenever a sweep through all 
N ( N  - 1)/2 Jacobi rotations turns up no more than one rotation with a localization 
gain larger than the current (th). If the increment from one value of (th) to the 
next is chosen extremely small, i.e. r is close to unity, then this strategy approaches 
the first mentioned procedure of always choosing the next Jacobi rotation as that 
with the largest predicted gain. We shall discuss the performance of these 
approaches for the case of the localization functional in Sect. 4.3. 

The procedures are obviously applicable to general quantum chemical opti- 
mization problems by replacing the test of the localization gain with a test of the 
predicted increment AL in the relevant function L. The Jacobi rotation method 
offers thus the advantage of being able to omit those four-index transformations 
which are associated with ineffectual orbital rotations without loss of  orthogonality 
in a manner not possible for the Newton procedure. It is of course also a simple 
matter to exclude the mixing of certain orbitals from the optimization process 
entirely, based on physical or chemical a priori considerations. This is accom- 
plished by never allowing any Jacobi rotations between such orbitals. 

It has been suggested [10] to save on four-index transformation time by 
accumulating all N ( N -  1)/2 Jacobi transformations for one sweep and, then, 
performing the four-index integral transformation only after each sweep. How- 
ever, as was pointed out in Sect. 1, the total number of operations for the 
accumulated four-index transformation depends on N in exactly the same manner 
as when the two-electron integrals are updated after each individual Jacobi 
rotation by the algorithm of Sect. 2 with no Jacobi rotation omitted. It is therefore 
apparent that the "accumulation approach" involves more computational effort 
than the "individual approach" when many Jacobi rotations can be skipped 
because of their ineffectiveness. In addition, it is to be expected that the delay in 
updating the two-electron integrals will slow down the convergence. It has not 
even been proven that convergence is guaranteed for the accumulation approach 
although, in our experience, this approach has always converged satisfactorily. 

4 Intrinsic localization of orthonormal orbitals 

4.1. Localization formalism 

Perhaps the best known instance of using a sequence of Jacobi rotations in 
quantum chemistry (outside the classical matrix diagonalization routines) is 
the intrinsic orbital localization procedure introduced by Edmiston and Rueden- 
berg [3]. The effectiveness of this approach derives from the facts that, for the 
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relevant functional, (i) optimization of the 2 x 2 problem is extremely simple, (ii) 
convergence is guaranteed when all integrals are updated after each Jacobi iteration 
and (iii) the localization gain of each Jacobi step can be simply predicted. For 
reasons which will become apparent in Sect. 4.3, the application of Newton-type 
procedures to orbital localization [3, 11] has proven less successful. 

The E-R localization of N orthonormal molecular orbitals qS~, ~b 1 . . . . .  ~b N is 
based on the maximization of the functional: 

N 

L = ~, {pp IPP], (4.1) 
p = l  

where 

[ i j [k l]= f dV1 f dV2(ai(1)(oj(1)ri-21~k(2)(al(2). (4.2) 

The functional of Eq. (4.1) is invariant with respect sign changes in any one 
orbital and to any exchange of the orbital indices. In that case, L depends only 
on (4y), as will be Seen below, and the rotation angle in the Jacobi matrix of Eq. 
(1.3) can be limited to the range: 

-re/4 ~< 7 < re/4. (4.3) 

This choice guarantees continuity in successive orbital changes .during the 
iterative process, in particular when y is close to convergence. 

The change in L due to the Jacobi rotations of Eqs. (1.2), (1.3) is given by: 

AL(ij) = L ( i ,  2 , . . . , ) V )  - L ( 1 , 2 , . . . ,  N) 

= [? [  ~] + [j': ]j ':] - [i= ] i=] -- [j= ] j : ] .  (4.4) 

By virtue of  Eqs. (2.14a) and (2.14b), it can be written as: 

AL(ij) = 2[/31 +/32 + 1q1 -- P1 - P: -- R1] (4.5) 

and, by virtue of the transformation of Eqs. (2.12a), (2.12b), (2.12e), this 
expression simplifies to: 

Define now: 

AL(ij) = 2[R1 cos 4y + Re sin 4y - R1]. (4.6) 

mij = - 2 R  1 = I ( i j ,  i j )  - [I(ii, ii) + I ( j j , j j )  - -  2 I ( i i ,  j j ) / 4 ,  ( 4 . 7 )  

B o = 2R2 = I(ij, ii) -- I(ij, j j) ,  (4.8) 
B 2 . ]  1/2 cos 4e = Aij/(A 2 + - , s ,  , 

sin 4~x = B,j/(A 2 + B 2) 1/2, (4.9) 

and use these equations to replace R 1 and Re by cos 4% sin 4y and (A ~ + B 2) 1/2 
in the first two terms within the brackets on the RHS of Eq. (4.6). Application 
of the cosine addition theorem then yields the E-R expression for the Y 
dependence of AL: 

AL(ij) = Aij + (A 2 + B2) 1/2 COS 4(y - ~). (4.10) 

Equations (4.9) determine the angle (4~) within a range of 2re. We choose this 
range as: 

-re <~4~ <re. (4.11) 
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The Jacobi rotation which maximizes the RHS of Eq. (4.10) is manifestly 
obtained in closed form by setting 7 equal to one of  the values (~ + n~/2). 
Because of the choice of  Eq. (4.11), the value of 7 lying in the range defined by 
Eq. (4.3) is then given by: 

7(max) = ~ = 4~/4. (4.12) 

This type of  2 × 2 orbital optimization is iterated for all possible orbital pairings 
until L cannot be increased anymore. By virtue of the additive form of the total 
localization functional of Eq. (4.1), the latter will increase monotonically during 
this process and convergence to a maximum is guaranteed. 

Analogously, the most delocalized orbitals are obtained by replacing Eq. 
(4.1~) with the range choice: 

0 ~< 4:¢ < 2~ (4.13) 

and consistently choosing ? as 

?(min) = c~ - re/4 = (4~ - ~)/4. (4.14) 

The Jacobi-rotation approach is particularly advantageous in the present 
context because the localization or delocalization gain resulting from any one 
Jacobi rotation is available from Eq. (4.10) before the actual execution of  the 
rotation. It is 

ALmax(i,j) = A o +_ (A2 + B~)1/2 (4.15) 

so that only five multiplications and a square root are required. The sequencing 
algorithm discussed in Sect. 3 can therefore be used very effectively. 

4.2 Integral transformation 

For the calculation of the critical quantities Ao, B;j, the integrals on the RHS of 
Eqs. (4.7), (4.8) must be available. Their generation requires all integrals [ij, kl] 
of the preceding iteration if all possible Jacobi rotations are to be pretested for 
the next iteration. It is therefore necessary to update all integrals [i j, kl] for each 
Jacobi rotation that is carried out, and the efficiency provided by the algorithm 
described in Sect. 2 is essential. 

The formulas given in Sect. 2.3 depend upon 7 only through the functions 
cos VT, and sin v7 with v = 1, 2, 3, 4. In the present case, these functions can be 
calculated directly from the quantities A o, B~j of Eqs. (4.7), (4.8), without 
recourse to trigonometric function evaluations. First, calculate cos 47 , sin 47 . 
From Eqs. (4.12) and (4.14), it is seen that cos 47 = cos 4~, sin 47 = sin 4:e in the 
case of localization and cos 47 = - c o s  4~, sin 4y = - s i n  4~ in the case of  de- 
localization. The values of cos 4:~ and sin 4~ are however directly given by Eqs. 
(4.9). Having cos 47 and sin 47, one obtains: 

cos 27 = [( 1 + cos 47)/2] 1/2, sin 27 = [( 1 -- cos 47)/2] 1/2. (4.16) 

Since, according to construction, the angle (47) lies in the range - ~  ~< 47 < 7% 
the signs of cos 27 and sin 27, /f they do not vanish, must be chosen as follows: 

If cos 27 # O, then: cos 27 > 0 always 

If  sin 27#O,  then: sin 27 > O if sin 47 > O; sin 2 7 < O i f s i n 4 7 ~ < O .  
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From cos 27, sin 27 one obtains: 

cos 7 = [( 1 + cos 27)/2] 1/2, sin 7 = [( 1 - cos 27)/2] 1/2, (4.17) 

where cos 7 is always positive and sin 7/> 0 if sin 27 ~> 0; sin 7 ~< 0 if sin 27 ~< 0. 
From the calculated functions one finally obtains: 

cos 37 = COS T COS 27 - sin T sin 27, sin 37 = cos T sin 27 + sin T cos 27 . (4.18) 

The functions of  Eq. (4.17) are,-of course, also needed for the orbital transfor- 
mation. 

4.3 Quantitative results 

As a test we applied the described localization program t o  the anthracene 
molecule, C14H10. All CC distances were assumed to be 1.4 A, all CH distances 
1.1 A. A minimal basis set (8s, 4p on carbon, 3s on hydrogen, eventempered) was 
used. All 47Dzh-symmetry-adapted occupied molecular orbitals were determined 
by an SCF calculation. Starting with these MO's,  the 47 localized orbitals were 
determined until the localization sum changed by less than 10 12 hartree. 

Quantitative data about  the iterative process pertaining to the third proce- 
dure discussed in Sect. 3 are listed in Table 1 for various choices of  the threshold 
factor ~. (The sequential thresholds are 1, z, T 2, ~3 . . . . .  the last one being the 
first ~< 1 0 - 1 2 . )  From this table, we can draw the following conclusions. 

Table 1. Quantitative documentat ion of  the localization of all 47 molecular orbitals of  anthracene, 
starting with Dzh symmetry-adapted SCF orbitals. Convergence criterion of  localization sum = I0-12 
hartree 

Threshold factor (r) .99 .95 .9 .6 .3 .1 .01 .001 .0001 

Number  of  thresholds (T) 2750 539 263 55 23 12 6 4 3 

Number  of  actual sweeps (S) 3776 1114 605 182 83 58 41 36 33 

Average number  of  
sweeps/threshold (S/T) 1.37 2.07 2.30 3.31 3.61 4.83 6.83 9.00 11.00 

Total no. of  Jacobi 
rotations (J) 3712 3794 3813 4068 3587 4253 4338 4681 5050 

Equivalent number  of  
full sweeps ~ (J/1081) b 3.43 3.51 3.53 3.76 3.32 3.93 4.01 4.33 4.67 

Average number  of  Jacobi 
rotations/sweep (J/S) 0.98 3.41 6 22 43 73 106 130 153 

Averagte number  of  Jacobi 
rotations/threshold (J/T) 1.35 7.04 14 74 156 354 723 1170 1683 

Relative RMSQ deviation 
of  actual no. of  (Jacobi 
rot./threshold) from average 
no. of  (Jacobi rot./threshold) 119% 60% 49% 37% 32% 31% 33% 35% 30% 

a This would be the number  of  iterations in which a quasi-Newton procedure would have to converge 
in order to be competitive with the Jacobi rotation approach 
b 1081 = 47 X 46/2 = Number  of independent Jacobi rotations in a full orthogonal t ransformation of  
47 orbitals 
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(i) There is not too much difference in efficiency, as measured by the total 
number of Jacobi rotations required (J), for threshold factors between 0.3 and 
0.9. Further calculations in this range revealed no smooth dependence of J on ~; 
the actual number seems to depend on numerical accidents. However, the total 
number of  Jacobi rotations increases markedly for very small v. A choice of 
between 0.3 and 0.6 is likely to give good results. 

(ii) For  such choices of  ~, about three to four sweeps are executed for each 
threshold value and, in each sweep, about 30% of  the Jacobi rotations are 
executed. 

(iii) The number of Jacobi rotations per threshold oscillates considerably from 
one threshold value to another in any one localization calculation, as indicated 
by the 30% to 40% deviation from its average value. 

(iv) Since a full transformation of all 47 orbitals would require 47 x 46/2 = 1081 
Jacobi rotations, it is apparent that the present procedure requires less computa- 
tional effort than what would be required for the integral transformations of 4 
quasi-Newton iterations. It seems highly unlikely that a quasi-Newton procedure 
would converge to 10 -12 hartree in three iterations. 

Table 1 also suggests, however, that at least as effective would be the first 
method discussed in Sect. 3, namely to execute only the Jacobi rotation with the 
largest localization gain in each sweep. Indeed, this algorithm required 3723 
Jacobi rotations in as many sweeps in close agreement with the results for 

= 0.99 in Table 1. 
The computation times required for the localization are compared with those 

of  the other parts of the SCF calculation in Table 2. The time required for the 
localization process is seen to be about equal to that required for the transforma- 
tion from the two-electron integrals between AO's to those between the occupied 
MO's. Both processes take about twice as long as the SCF calculation itself but 
only 20% of the time needed for the initial calculation of  the AO integrals. It 
should be noted that the times required for the AO integrals, the SCF calculation 
and the transformation from AO to MO integrals, all will increase substantially 
when extended basis sets are used instead of the minimal basis sets. T h e  
localization calculation itself(including the four-index updating) will, however, take 
no longer than for the minimal basis. It will therefore account for an even smaller 
fraction of  the total computation time. Thus, the E - R  localization does not 
require as great a computation effort as is often believed. Most likely, the 
misconception is due to unawareness of the efficiencies discussed in Sections 2 
and 3. 

Table 2. Comparison of  computat ion times for anthracene 

Generation and sorting of AO integrals a 10 

SCF calculation a 1 

Transformation of  two-electron integrals from the full 
AO basis to the basis of  occupied MO's  1.7 

Localization calculation (depends on choice of r) 1.7 2 

a Calculated without use of  D2h symmetry. This seems appropriate for 
comparison with the localization procedure molecule, in principle, mus t  
mix orbitals of  different irreps 
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